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Advection-Diffusion Equation

Scalar Advection-Diffusion Equation

Lc=—-krkAc+a-Vc =f
~——

diffusion  advection

@ 2D advection velocity vector:
a=(a,a) =|al(cosa,sing).
@ ¢ = advection direction.

@ x = diffusivity.

@ Describes many transport phenomena in fluid mechanics:
o Heat transfer.
e Semi-conductor device modeling.
@ Usual scalar model for the more challenging Navier-Stokes
equations.

@ Global Péclet number (L = length scale associated with Q):

_ rate of advection _ Lja| Re. Pr  (thermal diffusion)
~ rate of diffusion & Sc (mass diffusion)




Advection-Diffusion Equation

Advection-Dominated Regime

@ Typical applications: flow is
advection dominated.

Pe=150

Figure 1: Galerkin @ solution
(color) vs. exact solution (black)
(Pe = 150)

Advection-Dominated
(High Pe) Regime
4
Sharp gradients in exact solution
I
Galerkin FEM inadequate:
spurious oscillations (Fig. 1)

@ Some classical remedies:

o Stabilized FEMs (SUPG, GLS,
USFEM): add weighted residual
(numerical diffusion) to
variational equation.

e RFB, VMS, PUM: construct
conforming spaces that
incorporate knowledge of
local behavior of solution.




Discontinuous Enrichment Method (DEM)

The Discontinuous Enrichment Method (DEM)

@ First developed by Farhat et. al. in 2000 for the Helmholtz equation [1].

Idea of DEM:

“Enrich” the usual Galerkin polynomial field V" by the free-space solutions to
the governing homogeneous PDE Lc = 0.

c"=cP+cfF eV e (VEVWD)

where
VE = span{c: Lc=0}

@ Simple 1D Example:

Uy — Uox = 14X, X6(0,1)
u(0) =0,u(1) =1

e Enrichments: uf — uf, = 0= uf = C; + Coe¥ =

VE = span{1, &}.

Galerkin FEM pol jals: VE, = G 2X XN
o Galerkin polynomials: Ve_ . ) = span | 55—, =5 ¢




Discontinuous Enrichment Method (DEM)

Two Variants of DEM

@ Two variants of DEM: “pure DGM” vs. “true DEM”

|| DGM | DEM
VT vE [ VP e (VE\WP)
ch cE c® +cf
e —
Enrichment-Only “Pure DGM”: True or “Full” DEM:
The standard continuous Galerkin Splitting of the approximation
polynomial field is dropped into coarse (polynomial) and

entirely from the approximation. fine (enrichment) scales.

@ Unlike PUM, VMS & RFB: enrichment field in DEM is not required to
vanish at element boundaries




Discontinuous Enrichment Method (DEM)

Two Variants of DEM

@ Two variants of DEM: “pure DGM” vs. “true DEM”

|| DGM | DEM
VT vE [ VP e (VE\WP)
ch cE c® +cf
e —
Enrichment-Only “Pure DGM”: True or “Full” DEM:
The standard continuous Galerkin Splitting of the approximation
polynomial field is dropped into coarse (polynomial) and

entirely from the approximation. fine (enrichment) scales.

@ Unlike PUM, VMS & RFB: enrichment field in DEM is not required to
vanish at element boundaries =- DEM is discontinuous by
construction!

DEM = DGM with Lagrange Multipliers




Discontinuous Enrichment Method (DEM)

What about Inter-Element Continuity?

@ Continuity across element boundaries is enforced weakly using
Lagrange multipliers A" € W

A veE n® = —veE-n®  onre
but making sure we uphold the...

@ Discrete Babuska-Brezzi inf-sup condition':

# Lagrange multiplier < # enrichment
constraint equations —  equations

Rule of thumb to satisfy the Babuska-Brezzi inf-sup condition is to limit:

E E
n = V—J Emax{neZ|n§ %}

4
n* = # Lagrange multipliers per edge
nf = # enrichment functions

"Necessary condition for generating a non-singular global discrete problem.
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Discontinuous Enrichment Method (DEM)

Hybrid Variational Formulation of DEM

@ Strong form:
Find ¢ € H'(Q) such that <
(5):] —rbctave = f inQ <& ‘
: c = g, on =00 . ’
. ’

Q= U,;e:/1%e
M=u2,r

ree —renre
M = Uy o U, {renT?




Discontinuous Enrichment Method (DEM)

Hybrid Variational Formulation of DEM

@ Strong form:
Find ¢ € H'(Q) such that

) —-kAc+a-Ve = f,
(5): c =g
Ce—Cy = 0,

inQ
onl =90
on [

Notation:

Q=ug,Q°

F=ug,re

re¢ =renre

rint — Ue/<e Unel1 {re n re/

e=




Discontinuous Enrichment Method (DEM)

Hybrid Variational Formulation of DEM

@ Strong form:
Find ¢ € H'(Q) such that

. —
(S) - —-kAc+a-Ve = f, inQ
' ¢c =g, onl= o0
Ce—Cy = 0, onr™ l
@ Weak hybrid variational form: " Q

Find (¢, A\) € V x W such that:

av,e) + bAV) = r(v)
CORE B S
hold.?Vcevv cw - ST Notation:
y VI . {2 — Unge:l1%e
where r :,Uee:'1 r
re,e — re ﬂ re/
a(v,c) = (kVv + va, Ve, o o Ul (12

bA, V) =30 > o Jreer A(Ver — Ve)dl + [ Av dl



Discontinuous Enrichment Method (DEM)

Discretization & Implementation

@ Element matrix problem (uncondensed):

kPP kPE kPC cP I.P
kEP kEE kEC cE — I,E
kCP kCE 0 A h r.C




Discontinuous Enrichment Method (DEM)

Discretization & Implementation

@ Element matrix problem (uncondensed):

kPP kPE kPC CP I.P
kEP kEE kEC cE — I,E
kCP kCE 0 A h rC

Due to the discontinuous nature of VE, ¢F can be
eliminated at the element level by a static condensation




Discontinuous Enrichment Method (DEM)

Discretization & Implementation

@ Element matrix problem (uncondensed):

kPP kPE kPC P I.P
kEP kEE kEC cE — I,E
kCP kCE 0 A h rC

Due to the discontinuous nature of VE, ¢F can be
eliminated at the element level by a static condensation

Q

@ Statically-condensed True DEM Element:
RPP |~(PC CP =P
(& &) (%)= ()

@ Statically-condensed Pure DGM Element:
—kCE(kEE)_1kECAh — rC _ kCE(kEE)—1 rE

-

-
Q




Discontinuous Enrichment Method (DEM)

Discretization & Implementation

@ Element matrix problem (uncondensed):

K K KC P P Computational
KEP  KEE KEC cE | = complexity
K? K 0 AP c depends on dimw"

not on dimV£

Q

Due to the discontinuous nature of VE, ¢F can be J
eliminated at the element level by a static condensation

@ Statically-condensed True DEM Element:
RPP |~(PC CP =P
(& &) (%)= ()

@ Statically-condensed Pure DGM Element:
—kCE(kEE)_1kECAh — rC _ kCE(kEE)—1 rE

-

-
Q




DEI  Constant-Coefficient Advection-Diffusion Exiension to Variable-Coefficient Ac

Polynomial Enrichment Functions for 2D

Advection-Diffusion

@ Polynomial free-space solutions to a- Vc§ — Act = 0 (of any desired
degree n) can be derived?.

2The advantage of these polynomials over standard FEM polynomials is discussed
in: S. Brogniez, C. Farhat, “Theoretical Analysis of the DEM for the Advection-Diffusion
Equation at High Pe Number,” FEF 2011 (W2G, Wed. March 23, 14:10-14:30).




DEI  Constant-Coefficient Advection-Diffusion Exiension to Variable-Coefficient Ac

Polynomial Enrichment Functions for 2D

Advection-Diffusion
@ Polynomial free-space solutions to a- Vc§ — Act = 0 (of any desired

degree n) can be derived?.
cf(x) =laxx

cr (%)

2The advantage of these polynomials over standard FEM polynomials is discussed
in: S. Brogniez, C. Farhat, “Theoretical Analysis of the DEM for the Advection-Diffusion
Equation at High Pe Number,” FEF 2011 (W2G, Wed. March 23, 14:10-14:30).




DEI  Constant-Coefficient Advection-Diffusion Exiension to Variable-Coefficient Ac

Polynomial Enrichment Functions for 2D

Advection-Diffusion

@ Polynomial free-space solutions to a- Vc§ — Act = 0 (of any desired
degree n) can be derived?.
cr(x) = lax x|

cs(x)=laxx*+2(a-x)

cr (%) cs (%)

2The advantage of these polynomials over standard FEM polynomials is discussed
in: S. Brogniez, C. Farhat, “Theoretical Analysis of the DEM for the Advection-Diffusion
Equation at High Pe Number,” FEF 2011 (W2G, Wed. March 23, 14:10-14:30).




DEI  Constant-Coefficient Advection-Diffusion Exiension to Variable-Coefficient Ac

Polynomial Enrichment Functions for 2D

Advection-Diffusion

@ Polynomial free-space solutions to a- Vc§ — Act = 0 (of any desired
degree n) can be derived?.
cr(x) = lax x|

cs(x)=laxx*+2(a-x)
c5 (x) = |a x x|° + 6Ja x x|(a - x)

o ‘
o
ol
- y
o
o -
Py S

cE(x) cf(x) ck(x)

Slowly-varying (coarse) scale shape functions

2The advantage of these polynomials over standard FEM polynomials is discussed
in: S. Brogniez, C. Farhat, “Theoretical Analysis of the DEM for the Advection-Diffusion
Equation at High Pe Number,” FEF 2011 (W2G, Wed. March 23, 14:10-14:30).




DEI  Constant-Coefficient Advection-Diffusion Exiension to Variable-Coefficient Ac

Angle-Parametrized Exponential Enrichment

Functions for 2D Advection-Diffusion

@ Exponential free-space solutions to a - Vet — kAcE = 0 can be derived
as well.

aj+|al cos 6 . ap+lal sin 6; .
CE(X; 9/) _ e( s )(X Xr,r)e<72,c >(y Yr,i) (1)

e° = {0,-},‘;51 € [0,27) = set of angles specifying VE

Rapidly-varying (fine) scale shape functions



DEI  Constant-Coefficient Advection-Diffusion Exiension to Variable-Coefficient Ac

nge Multiplier Approximations

/
M~ veE - n®=-vcE -n®

Limit n* to satisfy inf-sup:

2 | exponential LMs
Use o .
7~ | polynomial LMs

Figure 3: Straight edge 1
oriented at angle o ¢ [0,27)
@ LM approximations arising from exponential enrichments:

e

’
e,e
i)

(=s7) 0<s<hi1<i< nexp}

where A®® = lal [cos(qb —a®®) 4 cos(6; — ae’e/)] .

@ LM approximations arising from polynomial enrichments:

Moo =span{s’, 0<s<ho<k<n -1}



DEI  Constant-Coefficient Advection-Diffusion Exiension to Variable-Coefficient Ac

Representative Numerical Results for Constant-

Coefficient Homogeneous Problem

g ] .
To achieve
ot 1 relative
_w'l lerror of 0.1%:
Lg 0L
= 4.5 x fewer
® 10t dofs
Galerkin B} L
10 ¢ e
. 12 15 x fewer
. 0 e dofs
15 mq -
10
' ‘ Mesh size h
DGM




DEI  Constant-Coefficient Advection-Diffusion Exiension to Variable-Coefficient Ac

Representative Numerical Results for Constant-

Coefficient Homogeneous Problem

I To achieve
o’} 1relative
w0l 1error of 0.1%:
10°k

Relative Error

~ 8 x less
CPU time

5 ~ 40 x less
CPU time

Galerkin

s 10
Mesh size h
o o Impressive results for
constant-coefficient problems!

DGM




DEI  Constant-Coefficient Advection-Diffusion  Extension to Variable-Coefficient Ac

Extension to Variable-Coefficient Problems

@ Define VE within each element as the free-space solutions to the
homogeneous PDE, with locally-frozen coefficients.

a(x) ~ a® =constant inside each element Q° as h — 0:
{a(x)-Vc—kAc=f(x) in Q}~U {a° Vc—kAc=f(x) in Q°.

yi+h

[
M1l

() | = ()
X+ 2 X+2 a(j —y, x)7
Q° Q°

Yi

Xj X+ h Xj +2h
@ Enrichment in each element:

c (X ee) —e 2 (cosd>e+cos€9)(x X,,)e o (sm $C+sin 07)(y—y7 ;) c V
e




DEI  Constant-Coefficient Advection-Diffusion  Extension to Variable-Coefficient Ac

Relation Between Local Enrichment and Governing

@ Given a(x) € C'(Q°), Taylor expand a(x) around an element’s midpoint
x°:

a(x) = a(X®) + Valx_ze - (X —X°) + O(x — X°)*  inQ°




DEI  Constant-Coefficient Advection-Diffusion  Extension to Variable-Coefficient Ac

Relation Between Local Enrichment and Governing

o Geiven a(x) € C'(Q°), Taylor expand a(x) around an element’s midpoint
x°:
a(x) = a(X°) + Va|y_xe - (X —X°) + O(x —X°)2  inQ°
@ Operator governing the PDE inside the element Q° takes the form
a(x) -Vc— kAc = Lec+ f(c) in Q°
where
Lec =a(X®) - Ve — kAc

f(c) = [Valxse - (X — X°) + O(x — X°)?] - Ve




DEI  Constant-Coefficient Advection-Diffusion  Extension to Variable-Coefficient Ac

Relation Between Local Enrichment and Governing

PDE

@ Given a(x) € C'(Q°), Taylor expand a(x) around an element’s midpoint
x°:

a(x) = a(X®) + Va|y_ze - (X —X°) + O(x —x°)®> inQ°
@ Operator governing the PDE inside the element Q° takes the form
a(x) -Vc— rkAc = Lec+ f(0) in Q°
where
Lec =a(X®) - Ve — kAc

f(c) = [Valxse - (X — X°) + O(x — X°)?] - Ve

Can we improve the enrichment
space for variable-coefficient problems?




DEI  Constant-Coefficient Advection-Diffusion  Extension to Variable-Coefficient Ac

“Higher Order” Enrichment Function for

Variable-Coefficient Advection-Diffusion

@ Linearize a(x) to second order, instead of to first order:
a(x) ~ a(X®) + Va|xgze - (x — X°) inQ°
@ Enrich with free-space solutions to
[Ax +b]-VcF — kACE =0 )
where A = Valx_ze, b = (a(X°®) — Va|x—xeX®).
@ Solutions to (2) are given by:

Vi-X ) 2 05
cE(x) = / exp { U';/ + (v - b)W} aw "
0

o; = eigenvalue of Va|x_ze
v; = eigenvector of Va|x_ze ’ 0

15/26



DEI  Constant-Coefficient Advection-Diffusion  Extension to Variable-Coefficient Ac

“Enrichment Function Bank”

Polynomial Family
CcEo(x) =1
Ce1(X) = [a° x x|
cE,o(x) = [a® x x| +2(a° - x)
cE4(x) = |a® x x| + 6/a® x x|(a® - x)




DEI  Constant-Coefficient Advection-Diffusion  Extension to Variable-Coefficient Ac

“Enrichment Function Bank”

Polynomial Family
CcEo(x) =1
Ce1(X) = [a° x x|
cE,o(x) = [a® x x| +2(a° - x)
cE4(x) = |a® x x| + 6/a® x x|(a® - x)

Exponential Family

a%+|a®| cos 6; a8+|a®|sin6;
E ( ! |2’|€ ”)(X_Xr,i) ( 2 lz,l I I)(y_yr,i)
cs(x;0)=e e




DEI  Constant-Coefficient Advection-Diffusion  Extension to Variable-Coefficient Ac

“Enrichment Function Bank”

Polynomial Family
CcEo(x) =1
cEy(x) = [a® x x|
cE,o(x) = [a® x x| +2(a° - x)
cE4(x) = |a® x x| + 6/a® x x|(a® - x)

Exponential Family

a%+|a®| cos 6; a8+|a®|sin6;
E ( ! |2’|€ ”)(X_Xr,i) ( 2 lz,l I I)(y_yr,i)
cs(x;0)=e e

“Higher Order” Enrichment
cf(x) = [} exp {”'T‘”z + (v - b)w} aw




DEI  Constant-Coefficient Advection-Diffusion Extension to Variable-Coefficient Ac

Element Nomenclature

Q- npol’ nexey — n/\
DGM Element: { Q- Enpm’ nexp;* -

DEM Element: Q — n®® — ™ = [Q — n®® — n*| U [Q4]

'@': Quadrilateral

n®® /nP°': Number of Exponential/Polynomial Enrichment Functions
n*: Number of Lagrange Multipliers per Edge

Q1 : Galerkin Bilinear Quadrilateral Element

I Name | n® | K |
Q-(45-21]9 | ¢e+{%=:m=0,...,4} | 2

Q—(4,5)"-2 |10 | ¢e+ {2 :m=0,..,4} | 2

DGMelements || ‘5 _'4,6)-3 | 13 | ¢e+ {2~ :m=o0,..8} | 3
Q-(49"-8 |14 | ¢e+{®~:m=0,....8} | 3

Q-5-17 5 | ¢pe+{ZZ:m=0,...,4} | 1

Q-9-2* 9 | ¢e+{%=:m=0,..,8} | 2

DEMelements || o 13 -3¢ |13 | o+ {27 m=0,..12} | 3
Q—-17-4" |17 | ¢pe+{¥¥F :m=0,..,16} | 4




DEI  Constant-Coefficient Advection-Diffusion Extension to Variable-Coefficient Ac

Computational Complexities

Element Asymptotic Stencil width for (# dofs) x 12 convergence
# of dofs uniform n x nmesh | (stencil width) | rate (a posteriori)
Qi Mel 9 9ne; 2
@ 3ng) 21 63n¢ 3
Q- (4,5 -2 4ng 14 56N, 3
Q- (4,5 -2 4ng 14 560, 3
Q-5-—17 3ng 21 631, 2_3
Qs 5ng 33 165n,, 4
Q—(4,9) -3 6ng 21 126N 4
Q—(4,9" -3 6n¢; 21 1260 4
Q-9-2*t 5ng 33 165ng 3_4
Q4 7Ng 45 3150, 5
Q—-13-3" 7ng 45 315n, 45
Q—17 -4t 9ng 57 513N, 4_5

’S — % —%—
| ‘,\‘ — e —%—

Figure 5: Q — 4 — 1 stencil

Figure 4: @ stencil



DEI  Constant-Coefficient Advection-Diffusion Extension to Variable-Coefficient Ac

Summary of Computational Properties

“COMPARABLES”

T —

A priori in A posteriori in
computational cost: convergence rate:
e DGM with n LMs and Q, e DGM with n LMs and Q;,
e DEM with n LMs and Q1 e DEM with n LMs and Q,/ Qn1

@ Exponential enrichments = integrations can be computed analytically.

@ When a constant, £cf = 0 = convert volume integrals to boundary
integrals:

a(vE,cf) = [(kVVvE-VcE +a- VehvF) dQ
= [-VcE -nvEdT




Inhomogeneous Rotating Advection Problem on an L-Shaped Domain Lid-D

Inhomogeneous Rotating Advection Problem on an
L-Shaped Domain

@ Homogeneous Dirichlet
boundary conditions are
prescribed on all six sides of
L-shaped domain .

¢=0" o Source: f=1.
ea'(x)=(1-y, x).
@ Outflow boundary layer along the
N liney=1.
0 c=0 1 X @ Second boundary layer that

terminates in the vicinity of the
re-entrant corner

Figure 6: L-shaped domain and (x,y) = (0.5,0.5).

rotating velocity field (curved lines
indicate streamlines)




Inhomogeneous Rotating Advection Problem on an L-Shaped Domain Lid-D

Solutions Plots for Pe = 102 with ~ 3000 dofs

Q-5-1* Q-9-2*

* “Stabilized Q" is upwind stabilized bilinear finite element [5].




Inhomogeneous Rotating Advection Problem on an L-Shaped Domain Lid-D

Convergence Analysis & Results

Leslyaped rotating field, inhomogeneous problem, Pe = 1000 Rate # dofs
w —y Element of to achieve
Stabilzed 0, convergence | 102 error
o B2 Q 1.94 62, 721
T Q-5-17 1.55 21,834
X : ) 267 33,707
g o Q-—9-—2F 2.37 7,568
£ I Q 350 20,796
® arrat Q—13-3*+ 3.23 5,935
. Q—17— 4" 3.26 4,802
10
w - ,‘ * “Stabilized Qy” is upwind stabilized bilinear
10 10 .
h finite element [5].

@ To achieve for this problem the relative error of 1% for Pe = 10°:
e Q- 5— 1" requires 2.9 x fewer dofs than Q. (same sparsity).

e Q-9 - 2" requires 4.5 x fewer dofs than Qs (same sparsity).

e Q- 13 — 3" requires 3.5 x fewer dofs than Q, (same sparsity).




Inhomogeneous Rotating Advection Problem on an L-Shaped Domain Lid-D

Convergence Analysis & Results

Leslyaped rotating field, inhomogeneous problem, Pe = 1000 Rate # dofs
w —y Element of to achieve
Stabilzed 0, convergence | 102 error
o B2 Q 1.94 62, 721
T Q-5-17 1.55 21,834
X : ) 267 33,707
g o Q-—9-—2F 2.37 7,568
£ I Q 350 20,796
® arrat Q-13-3* 3.23 5,935
. Q—17— 4" 3.26 4,802
10
w - ,‘ * “Stabilized Qy” is upwind stabilized bilinear
10 10 .
h finite element [5].

@ To achieve for this problem the relative error of 1% for Pe = 10°:
e Q- 5— 1" requires 2.9 x fewer dofs than Q. (same sparsity).
= 3.6 x less CPU time.
e Q-9 - 2" requires 4.5 x fewer dofs than Qs (same sparsity).
= 9.2 x less CPU time.
e Q- 13 — 3" requires 3.5 x fewer dofs than Q, (same sparsity).
= 11.4 x less CPU time.

22/26



Inhomogeneous Rotating Advection Problem on an [-Shaped Domain Lid-Di

Lid-Driven Cavity Flow Problem

@ Q=(0,1) x (0,1), f=0.

jjm@/(f\;;g\;m\f @ a(x) computed numerically by
ARR. . . .
o ggggggs&g%;w solving the incompressible
o NS ?g Navier-Stokes equations for
s lid-driven cavity flow problem
m\\\\\:\\\;i::/ ;?;é” . .
NS (stationary sides and bottom,
B tangential movement of top).
i @ Advection field reconstructed using
1 =0 interpolation with bilinear shape
; ..
functions ¢7:
# nodes of Q°
c=0 Q c=1
a®§)= >, a%f(¢)
i=1
0 e _og 1 X @ c(x) represents temperature in
% =

cavity.



Inhomogeneous Rotating Advection Problem on a Shaped Domain Lid-Di

Convergence Analysis & Results (x = 0.01, Pe ~ 260)

Canity Flow DGM Relative Errors, & =0.01

1 E Qy
— =G4 )2
QB
B ——-0-{4 93
1 06
N
20 O .
Qo
0°
10 ]
10 .
h |
@ Pure DGM elements without “higher .
order” enrichment outperform Galerkin o -
comparables. '
Q- (4,5) -2




Inhomogeneous Rotating Advection Problem on a Shaped Domain Lid-Di

Convergence Analysis & Results (x = 0.01, Pe ~ 260)

Cavity Flow DGM Relative Errors, &= 0.01

10’ E Q,
Q452
QE
o493
1U" 06
ol
@ - 05=
z 0t O ’
o 109 08 07 06 05 04 03 02 01 O
= !
Qo
10’
[ —
:
1w0* - N
10 ve
h

@ Pure DGM elements without “higher
order” enrichment outperform Galerkin o -
comparables.

@ Further improvement in computation by
adding “higher order” enrichment.




Discontinuous Enrichment Method (DEM) =
efficient, competitive alternative to stabilized FEMs
for advection-diffusion in a high Péclet regime.

@ Parametrization of exponential basis enables systematic design of DEM
elements of arbitrary orders.

@ Augmentation of enrichment space with additional free-space solutions
can improve further the approximation.

@ For all test problems, enriched elements outperform their Galerkin and
stabilized Galerkin counterparts of comparable computational
complexity, sometimes by many orders of magnitude.

@ In a high Péclet regime, DGM and DEM solutions are almost completely
oscillation-free, in contrast with the Galerkin solutions.

@ Advection-diffusion work generalizable to more complex equations in
fluid mechanics (e.g., non-linear, unsteady, 3D).

@ Future work: DEM for incompressible Navier-Stokes.
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